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Abstract. Using an experimental optimization approach, this study investigated whether two human movements, 
pointing tasks and squat-jumps, could be modeled with a reduced set of kinematic parameters. Three sigmoid 
models were proposed to model the evolution of joint angles. The models parameters were optimized to fit the 2D 
position of the joints obtained from pointing tasks and 120 squat-jumps. The models were accurate for both 
movements. This study provides a new framework to model planar movements with a small number of meaningful 
kinematic parameters, allowing a continuous description of both kinematics and kinetics. Further researches should 
investigate the implication of the control parameters in relation to motor control and validate this approach for 
three-dimensional movements. 
 
1. Introduction 
Quantitative analysis of human movement usually relies on the time history of reflective markers fixed to 
anatomical landmarks obtained from optical systems. These raw data are further used to compute relevant 
parameters such as velocities, accelerations, moments or powers. During the recent years, the performance of 
acquisition systems greatly increased, especially considering acquisition rate and accuracy. However, raw data still 
remain noisy, due to the movement of the skin with regard to the bones and finite accuracy of such systems. 
Furthermore, the effect of noise increases as the data is derived with respect to time, which is a very common task 
in movement analysis. 

To overcome the above issues, raw data are quite always smoothed or filtered, resulting in well-known decrease 
of movement amplitude. Specific filtering methods accounting for properties of the skeletal system such as 
constant length of the limbs have been used but such approaches still suffer from the motion of the markers 
relatively to the skeletal system. An interesting feature of human motion is the necessity for decelerating the joint 
displacement before its maximal amplitude (anatomical constraint) in order to protect this joint from any damage 
(van Ingen Schenau, 1989). Regarding to kinematics, the anatomical constraint implies that joint angular time 
history should match an asymmetric sigmoid shape (Zelaznik et al., 1986) and thus an asymmetric bell-shaped 
velocity profile (Soechting and Lacquaniti, 1981), which accounts for synergistic actuators' activations at a joint, 
i.e. agonist and antagonist muscle-tendon systems. In the field of human movement analysis, Plamondon proposed 
a model of asymmetric sigmoid (Plamondon, 1995, 1998; Plamondon et al., 2003). However, the velocity is not 
null at the end of the movement so that the anatomical constraint is not satisfied. 

Therefore, this study aimed at modeling two different movements, i.e. a pointing task and an explosive 
movement, the squat-jump, using a generic model of sigmoidal joint displacement based on meaningful kinematic 
parameters which accounts for the anatomical constraint. Three sub models were used to achieve best fitting of 
experimental data obtained from both movements (Creveaux et al., 2012). 
 
2. Methods 
2.1  General model of joint displacement 
Accounting for a monotone evolution of a given angle and considering the anatomical constraint requirements, it is 
assumed that each angle θ is characterized by the following properties (figure 1): 

- at the beginning and at the end of the movement, the velocity and the acceleration are equal to zero; 
- the angle increases (respectively decreases) throughout the whole movement; 
- during the movement, the velocity increases (respectively decreases) until it reaches its maximum 

(respectively minimum), then decreases (respectively increases). 
 



 
Figure 1. Shape of used sigmoid: angle, velocity and acceleration versus time (for the increasing case). 

 
More precisely, we try to determine a function 𝜃 from 0,𝑇  to ℝ of class 𝐶!. Let 𝑡!, 𝑡!, 𝑡! be three instants such 
that 
 0 ≤ 𝑡! < 𝑡! < 𝑡! ≤ 𝑇 (2.1) 
Let 𝜃!, 𝜃!, 𝜃! be three real numbers such that 
 𝜃! < 𝜃! < 𝜃! or 𝜃! < 𝜃! < 𝜃! (2.2) 
We assume that 

- 𝜃 is constant and equals to 𝜃! on 0, 𝑡! ; 
- 𝜃 is constant and equals to 𝜃! on 𝑡! ,𝑇 ; 
- there exists 𝜀 ∈ −1,1  such that 𝜀𝜃 is strictly increasing on 𝑡! , 𝑡! ; 
- 𝜀𝜃 is strictly convex on 𝑡! , 𝑡! ; 
- 𝜀𝜃 is strictly concave on 𝑡!, 𝑡! ; 

We set 
 𝜀 = 𝑆𝑖𝑔𝑛 𝜃! − 𝜃! 𝜖 −1,1  (2.3) 
Let K be the number defined by 
 𝐾 = 𝑚𝑎𝑥  𝜃′ 𝑡 , 𝑡 ∈ 𝑡! , 𝑡! 𝑖𝑓  𝜀 = 1

𝑚𝑖𝑛  𝜃′ 𝑡 , 𝑡 ∈ 𝑡! , 𝑡! 𝑖𝑓  𝜀 = −1 (2.4) 

Since 𝜃 is of class 𝐶!, we have 

 
𝜃 𝑡! = 𝜃! , 𝜃′ 𝑡! = 0, 𝜃" 𝑡! = 0
𝜃 𝑡! = 𝜃! , 𝜃′ 𝑡! = 0, 𝜃" 𝑡! = 0
𝜃 𝑡! = 𝜃! , 𝜃′ 𝑡! = 0, 𝜃" 𝑡! = 0

 
(2.5a) 
(2.5b) 
(2.5c) 

 ∀𝑡 ∈ 𝑡! , 𝑡! , 𝜀𝜃" 𝑡 > 0
∀𝑡 ∈ 𝑡!, 𝑡! , 𝜀𝜃" 𝑡 < 0 (2.5d) 

(2.5e) 
We consider 𝛼, 𝛽 ∈ 0,1  and 𝑘 ∈ ℝ defined by 

 𝛼 =
𝑡! − 𝑡!
𝑡! − 𝑡!

𝛽 =
𝜃! − 𝜃!
𝜃! − 𝜃!

𝑘 = 𝐾
𝑡! − 𝑡!
𝜃! − 𝑡!

 (2.6) 

Applying the following change of scale, 

 ∀𝑡 ∈ 𝑡! , 𝑡! , 𝑢 =
𝑡 − 𝑡!
𝑡! − 𝑡!

∈ 0,1  (2.7a) 



 
∀𝑢 ∈ 0,1 , 𝑔 𝑢 =

𝜃 𝑡! − 𝑡! 𝑢 + 𝑡! − 𝜃!
𝜃! − 𝜃!

 (2.7b) 

The problem can be reformulated as follow: we search a function g of class 𝐶! defined on 0,1  satisfying: 
 𝑔 0 = 0, 𝑔′ 0 = 0, 𝑔" 0 = 0

𝑔 1 = 1, 𝑔′ 1 = 0, 𝑔" 1 = 0
𝑔 𝛼 = 𝛽, 𝑔′ 𝛼 = 𝑘, 𝑔" 𝛼 = 0

 
(2.8a) 
(2.8b) 
(2.8c) 

 ∀𝑢 ∈ 0,𝛼 , 𝑔" 𝑡 > 0
∀𝑢 ∈ 𝛼, 1 , 𝑔" 𝑡 < 0 (2.8d) 

(2.8e) 
Remark 2.1. Under the assumptions given in (2.8), we have necessarily 
 𝑘 ≥ 𝑚𝑎𝑥  

𝛽
𝛼
,
1 − 𝛽
1 − 𝛼

> 1 (2.9) 

Finally, the function 𝜃 is defined for all 𝑡 ∈ 0,𝑇  by 
 

𝜃 𝑡 =

𝜃! , 𝑖𝑓  𝑡 ≤ 𝑡!

𝜃! − 𝜃! 𝑔
𝑡 − 𝑡!
𝑡! − 𝑡!

+ 𝜃! , 𝑖𝑓  𝑡! < 𝑡 < 𝑡!

𝜃! , 𝑖𝑓  𝑡 ≥ 𝑡!

 (2.10) 

This function if defined by 7 independent parameters: 
- 2 time scale parameters (𝑡! and 𝑡!); 
- 2 angle scale parameters (𝜃! and 𝜃!); 
- 3 shape parameters (𝛼,𝛽, 𝑘). 

Thus, 𝜃 can be written under the form 𝜃!!,!!,!!,!!,!,!,!. Aimed to solve the system (2.8), we have to include into the 
model 3 control parameters, which have to be related with 𝛼,𝛽 and 𝑘. In the next section, 3 sigmoid models, i.e. 
SYM, NORM and INVEXP are presented. 
 
2.2  The SYM model 
The SYM model was built using a pseudo-symmetry approach. Its function g is defined by 𝛼,𝛽 ∈ 0,1  and 𝜅 > 1. 
Let 𝑔!,!,! be a function of class 𝐶! from 0,𝛼  to ℝ satisfying (2.8a), (2.8c) and (2.8d). If the function g is defined 
from 0,1  to ℝ by, 
 𝑔 𝑢 =

𝑔!,!,! 𝑢 , 𝑖𝑓  𝑢 ≤ 𝛼
1 − 𝑔!!!,!!!,! 1 − 𝑢 , 𝑖𝑓  𝑢 > 𝛼 (2.11) 

Then, g is of class 𝐶! on 0,1  and (2.8) holds. Considering the function 𝐻!,!,! defined on 0,𝛼  for all 𝑎, 𝑏 > 0 
and 𝜅 > 2 as 
 𝐻!,!,! 𝑢 = 𝑎 1 − 𝑒!!!!  (2.12) 
a, b and 𝜅 have to be determined so that (2.8a), (2.8c) and (2.8d) hold. We set 
 𝑟! =

1
𝑒!.! − 1

≈ 1.54 (2.13) 

For all 𝛼,𝛽 ∈ 0,1 !, for all k such that 𝑘 > 𝑟! 𝛽 𝛼, there exists 𝑎, 𝑏, 𝜅 ∈ ℝ!∗
!× 2,∞  such that (2.8a), (2.8c) 

and (2.8d) hold for function 𝐻!,!,!. a, b and 𝜅 still need to be defined. We set 
 𝛾 =

𝛽
𝑘𝛼

∈ 0, 𝑒!.! − 1  (2.14a) 

It exists an unique 𝑋 ∈ 0.5,1  such that 
 𝑒! − 1

1 − 𝑋
𝑋

= 𝛾 (2.14b) 

It follows 

 𝑎 =
𝛽

1 − 𝑒!! 𝑏 =
𝑋
𝛼! 𝜅 =

1
1 − 𝑋

 (2.14c) 

By setting 𝑎, 𝑏, 𝜅 = 𝐺 𝛼,𝛽, 𝑘 , the function g is defined for all 𝑢 ∈ 0,1  by 

 𝑔 𝑢 =
𝐻! !,!,! 𝑢 , 𝑖𝑓  𝑢 ≤ 𝛼

1 − 𝐻! !!!,!!!,! 1 − 𝑢 , 𝑖𝑓  𝑢 > 𝛼 (2.15) 

 
2.3  The NORM model 
The NORM model (named from its relation to the normal law) function g is defined by 3 parameters 𝑎 ∈ 0,1 , 
𝑝 > 0 and 𝑠 > 0. As a reminder, the density function of the normal, or Gaussian distribution with mean m and 
variance 𝑠! is given by: 



 ∀𝑥 ∈ ℝ, 𝑓 𝑥 =
1

𝑠 2𝜋
𝑒𝑥𝑝 −

1
2
𝑥 −𝑚
𝑠

!
 (2.16) 

Considering the erf function defined by 

 ∀𝑥 ∈ ℝ, erf 𝑡 =
2
𝜋

𝑒!!!𝑑𝑡
!

!
 (2.17) 

The cumulative distribution function of the normal law is given by 

 ∀𝑥 ∈ ℝ,Φ 𝑥 =
1
2
𝑒𝑟𝑓

𝑥 −𝑚
2𝑠

+
1
2

 (2.18) 

For all 𝑝 > 0 

 ∀𝑢 ∈ 0,1 ,G 𝑢 = 𝑙𝑛
𝑢!

1 − 𝑢!
 (2.19) 

The function g is defined by 

 
∀𝑡 ∈ 0,1 , 𝑔 𝑡 = Φ 𝐺 𝑡

𝑔 0 = 0
𝑔 1 = 1

 
(2.20a) 
(2.20b) 
(2.20c) 

 
2.4  The INVEXP model 
The INVEXP model (derived from the inverse exponential) function g is defined by 3 parameters 𝜆, 𝜇 > 0 and 
𝑎 ∈ ℝ. For all a, for all 𝜆 and 𝜇 we set 

 𝛼 =
𝜆

𝜆 + 𝜇
∈ 0,1  (2.21) 

and we consider the function 𝑔!,! as: 

 

𝑔!,! = 1, 𝑖𝑓  𝑎 = 0

∀𝑦 ∈ 0,𝛼 𝑔!,! 𝑦 = 1 − 𝑒𝑥𝑝
𝑡

𝑎 𝑡 − 𝛼
∀𝑦 ∈ 𝛼, 1 𝑔!,! 𝑦 = 1

𝑖𝑓  𝑎 > 0 

(2.22a) 
 
(2.22b) 
 

For all 𝑎 ∈ ℝ and for all 𝛼 ∈ 0,1 , we consider the function 𝐺!,! defined by 

 
𝑖𝑓  𝑎 ≥ 0, 𝐺!,! = 𝑔!,!
𝑖𝑓  𝑎 < 0, 𝐺!,! = 𝑔!!,!!!

 (2.23) 

For all 𝜆, 𝜇 > 0, 𝑓!,! is defined by 

 
∀𝑡 ∈ 0,1 , 𝑓!,! 𝑡 = 𝑒𝑥𝑝 −

1
𝑡! 1 − 𝑡 !

𝑓!,! 0 = 0
𝑓!,! 1 = 1

 
(2.24a) 
(2.24b) 
(2.24c) 

For all 𝑎 ∈ ℝ, 𝜆, 𝜇 > 0, ℎ!,!,! is defined by: 
 ℎ!,!,! = 𝑓!,!𝐺!,! !!!  (2.25) 
The function g is defined by 

 ∀𝑡 ∈ 0,1 , 𝑔 𝑡 =
ℎ!,!,! 𝑢 𝑑𝑢!

!

ℎ!,!,! 𝑢 𝑑𝑢!
!

 (2.26) 

 
2.5  Definition domains of the sigmoid models 
Each of the 3 functions is defined by 3 parameters. For all 𝑘 > 1, there exist a part 𝑆! of 0,1 ! such that for all 
𝛼,𝛽 ∈ 𝑆!, there exist at least one sigmoid of kind g satisfying (2.8) whose parameters can be determined by 

splitting (2.8) in 3 non-linear equations which can be solved with a numerical solver. This part 𝑆! differs for the 3 
sigmoid models. The bigger is obtained with the INVEXP model (Figure 2). 



 
Figure 2. 𝑆! domains of the three sigmoids for k=1.2 (a), k=1.5 (b), k=3 (c), and k=4.5 (d). INVEXP, NORM and 
SYM domains are  plotted in red, blue and green respectively. According to (2.28), SYM domain is empty for 
k=1.2 and k=1.5. 
 
Examples of position and velocity curves obtained from the three models are provided in figure 3. 



 
Figure 3. Examples of curves for angle and angular velocity for INVEXP (a), NORM (b) and SYM (c) models. The 
boundaries of domains are plotted in red dashed lines. 
 
3. Experimental procedures 
3.1  Pointing task 
9 right-handed male subjects (age = 24.9 ± 2.42 years, height = 177.6 ± 5.83 cm and mass = 68.8 ± 8.18 kg) 
were asked to perform pointing tasks in the horizontal plane. The total number of pointing tasks was 304. 
Movements were performed for five directions and two distances (Figure 4). For each direction, two spherical 
targets were placed on a table at 60 and 80 cm from the shoulder. Directions of pointing task ranged regularly from 
30 to 150 degrees including pointing along the antero-posterior axis. The described position of the targets ensures 
that each of them is located inside the subjects workspace (Figure 5) when considering a 80 cm upper limb length 
and the corresponding anthropometric dataset (Bastien et al., 2010). At the beginning of the movement, subjects 
had to position their arm so that the forefinger was located at 40 cm of the soulder in the antero-posterior direction. 
During the experiment, subjects sat on a chair whose height was adjusted so that the upper limb remained in the 
horizontal plane while moving over the table from starting point to targets and the trunk was immobilized by using 
straps. In order to ensure that the upper limb remained in the horizontal plane, the subjects were instructed to keep 
the upper limb lying on the table during the movements. Video reflective markers were placed on the subjects at 
the shoulder (acromion), elbow (olecrane), wrist (middle of radial and ulnar styloid processes) and forefinger 
extremity to allow further modeling of the upper limb. For each target, subjects performed three movements which 
were filmed at 25 Hz with a numeric camera JVC © Everio placed above the subjects and oriented vertically. Raw 
experimental data, i.e. the position of the joints throughout the movement, were extracted from videographic 
recordings. 



 

 

(a) Upper view of the task environment (b) Targets (continuous lines) and initial arm 
position (dashed line) 

Figure 4. Pointing task experimental procedure. 
 

 
Figure 5. Upper limb workspace (adapted from (Bastien et al., 2010)). 
 
3.2  Squat jumping 
13 subjects performed 10 vertical jumps. Instructions were given for keeping the hands on the hips during the 
movement to limit the contribution of the upper limbs to the performance. Furthermore, subjects were asked to do 
no countermovement. The jumps that did not meet both of these requirements were excluded from the study. In 
order to model the skeleton in a 4 rigid segments system, landmarks were placed on the left fifth 
metatarsophalangeal, lateral malleolus, lateral femoral epicondyle, greater trochanter and acromion. These 
landmarks define the foot, the shank, the thigh and the upper body (Head, Arms and Trunk: HAT). The subjects 
were filmed orthogonally to the sagittal plane at 100 Hz and the ground reaction force was recorded at 1000 Hz 
from an OR6-7-2000 AMTI force plate. The center of mass (CoM) position of limbs was computed using 
anthropometric data (Winter, 2009). The whole body CoM (Center of Mass) position was determined on the one 
hand from kinematic data and on the other hand from force plate measurements using a double numerical 
integration procedure. For the latter, subject mass, initial body CoM position and velocity had to be set. These 
values were computed so that the difference between CoM path obtained from kinetic and kinematic data was 
minimized in a least square sense. This optimization step was also used to synchronize both recording sources. 
 
4. Data processing 
4.1  Skeletal model 



 
Figure 6. General geometrical representation of the skeletal model 
 
For both tasks, the limbs were modeled as rigid bodies rotating around frictionless hing joints. Given p limbs, the 
joint positions are defined by the points 𝐴! 𝑥! , 𝑦!  with 𝑗 ∈ 1… 𝑝  and p = 3 and p = 4 for pointing task and squat 
jump respectively. Thus, the position of any joint is given by 

 𝑧𝐴! = 𝑧𝐴! + 𝑙!𝑒𝑥𝑝 𝑖 𝜃!

!

!!!

!!!

!!!

 (4.1) 

Where I is the imaginary unit and 𝑧𝐴! is the affix of 𝐴!. 
 
4.2  Determination of sigmoid parameters 
Sigmoid parameters were obtained from a multi-stage optimization procedure. First, 𝑡!, 𝑡!, 𝜃!, 𝜃!, 𝛼, 𝛽 and 𝜅 were 
estimated from experimental data. The scale parameters were defined so that the absolute angular velocity peak 
occurs between 𝑡! and 𝑡! and its sign changes at the endpoint of this interval. Thus, the shape parameters 𝛼, 𝛽 and 
𝜅 were determined tanks to (2.6). 
 First optimization consisted in minimizing the sum of square of differences between experimental angles and 
those obtained from the sigmoid models at each instant. The optimization was achieved for each sigmoid with the 
lsqcurvefit function provided in Matlab software. Initial values of parameters were set from estimations of 
experimental data described previously. This optimization stage will be further referred to as local optimization. 
 Secondly, differences between experimental and model reconstructed joint positions were minimized in a least 
square sense. Compared to the previous stage, this optimization can be considered as global since for the latter, the 
parameters of the sigmoids were determined simultaneously. Computation of model-based joint positions implies 
the lengths of the limbs to be provided. For the pointing tasks, the optimization was performed using (i) mean 
experimental limb lengths (semi-global optimization) and (ii) limb lengths as model parameters (global 
optimization). 
 
4.3  Squat jump specific procedure 
The modeling of the jump focused on the position of the joints in a reference frame located at the distal extremity 
of the foot. Thus, the optimization consisted in fitting the experimental joint positions of ankle, knee, hip and 
shoulder with the model parameters in this reference frame. Since joints do not remain fully extended after the 
takeoff, differences were not taken into account during the whole movement. This prevented the model from 
underestimating the necessary amplitude of joint extensions. Therefore, differences between experimental and 
model-based data were considered during the intervals corresponding to increase of vertical joint coordinates in the 
given reference frame (e.g. the error at the ankle joint was only taken into account while the vertical distance 
between the knee and the foot extremity increased). 
Second stage of optimization included non-linear constraints on position, velocity and acceleration of the body 
CoM computed from sigmoid model. It was imposed that the body CoM position computed from both the sigmoid 
model and the force plate data were similar at the instant 𝑡! for which the marker located on the distal extremity of 



the foot started to move upward. At this instant, equality for the coordinates of both velocity and acceleration of 
body CoM obtained from kinetic and kinematic data was also required. Finally, body CoM vertical acceleration 
was constrained to be greater than -9.81 m.s-2 before 𝑡! ensuring that takeoff occurs necessarily after 𝑡!. From 𝑡! to 
the end of the jump, the movement of 𝐴! was set so that kinetic and kinematic-based movement of the CoM were 
similar. This results in a continuous characterization of the movement position, velocity and acceleration. It should 
be noticed that using similar constraints for jerk and further derivatives could have led to description of class 𝐶! 
and higher. 
 
4.4  Modeling accuracy 
At each instant i of the joint j, the optimization accuracy can be quantified by the difference between experimental 
data (𝑥!! and 𝑦!!) and sigmoid-modeled data (𝑋!! and 𝑌!!): 

 𝜀!,! = 𝑋!! − 𝑥!!
! + 𝑌!! − 𝑦!!

!
 (4.2) 

In further analysis, maximal 𝜀!"# and mean 𝜀!"#$ values of these differences were used to account foir the fitting 
accuracy of the modeling procedures. 
 
4.5  Statistical analysis 
For both maximal and mean accuracies, the Shapiro-Wilk test reported unnormal distributions. Thus, statistical 
tests were realized on normally distributed log10 of observations (i.e. errors and computation time). Firstly, anovas 
for repeated measures were performed for errors and computation time. When anovas reported significant results, 
post-hoc tests were performed to check for differences between the sigmoid models and the optimization 
procedures. All the tests were realized with R and statistical significance was set at 95% confidence level, i.e. 
p<0.05. 
 
5. Results 
The results were obtained from 304 pointing tasks and 120 squat-jumps. These results are very accurate from  
numerical viewpoint (Figure 7). Indeed, in pointing task, in 95% of cases, for the three models, 𝜀!"#, was smaller 
than 2.894 cm. 𝜀!"#$ was smaller than 0.824 cm. For squat jumps, 𝜀!"# and 𝜀!"#$ wrer respectively equal to 
8.492 cm and 2.882 cm. 



 
Figure 7. Time histories of joint angles in pointing task. Experimental data are plotted with black points, INVEXP 
model with red line, NORM model with blue line and SYM model with green line. 
 
6. Discussion 
This study evaluated different optimization methods to fit joint trajectories produced during pointing tasks and 
squat jumps. The evolution of joint angles during the movements was modeled using three sigmoid shaped 
functions. Assuming a constant length of the limbs, the whole movement was reconstructed from the sigmoid 
models parameters. For each movement type (i.e. pointing tasks and squat jumps) and sigmoid model, different 
optimization methods were investigated. In the literature, only Plamondon used a similar approach. However 
among the published articles, experimental data were presented only in (Plamondon, 1998). Furthermore, no 
quantitative results were provided and the data was presented for a single subject. This does not allow to compare 
the present models with Plamondon's one. However, as mentioned earlier, the models used in the present study are 
defined on a bounded time interval contrarily to the log-normal models for which the end of the movement is not 
clearly defined. 
Differences between original and reconstructed data were lower for pointing tasks than for squat-jumps. The 
relatively greater amplitude of the joint trajectories could explain this result during the jumping movement. 
Moreover, the modeling of the skeleton assumes rigid bodies between the joints. Considering the pointing tasks, it 
can be supposed that the length of the modeled limbs is quite constant. This assumption is supported by the 
similarity of the errors observed for global and semi-global methods. The rigid bodies assumption would be less 
true for squat-jump, especially for the trunk limb. Indeed, the spine is composed of many joints which allow 
bending of the trunk and thus, the trunk may be divided into two segments to ensure that the rigid bodies model is 
close enough to the reality of the movement. 
The modeling methods proposed in this study deal with planar movements. The higher errors obtained with 
modeling of squat jumps may be explained by the movement of the joints along the transverse axis, especially for 
the knee. In comparison, pointing tasks would be closer to a real planar movement since the movement is 
performed on a planar surface. 
Concerning optimization methods computing velocity, computation lasted longer for semi-global method than for 
local one in pointing task. Global optimization executed with similar velocity compared to semi-global method. 



Thus, global optimization should be used unless specific purposes are researched. For the squat-jumps, the present 
results show that unsurprisingly, using the constrained method is much more longer than the unconstrained 
optimization. 
For both pointing tasks and squat jumps, similar accuracy was obtained with the three models of sigmoids. Among 
the two movements and the optimization methods, it appears that the NORM model allows fastest computation. 
Considering SYM and INVEXP models, the non-linear equation solving and the numerical integration can explain 
their relatively slower execution respectively. NORM model formulation takes advantage of the native 
implementation of the erf function in Matlab software thus ensuring fast computation. 
 
7. Conclusion 
The present results show that joint trajectories during planar movements such as pointing tasks or squat-jumps can 
be modeled using meaningful kinematic parameters. Among the three sigmoid models tested in this study, it 
appears that the NORM model is computed faster and allows better data fitting of the pointing tasks than other 
models. On the contrary, for squat-jumps, INVEXP and SYM models fitted better original data. From these results, 
it can be suggested that INVEXP and NORM models should be used preferentially. Indeed, the INVEXP model did 
not lead to better results and needs substantial computation time compared to other models. Despite the important 
computation time, INVEXP model may be useful for modeling specific movements, especially fast movements, 
which may not allow a good fitting with NORM model due to the relatively small definition domain of this model. 
For relatively slow and smooth movements, NORM model should be primarily used. Considering the class of the 
three models, INVEXP or NORM models should be used when the jerk has to be computed, since it can be 
analytically determined from the models formulation. If the jerk is not considered as a relevant parameter, both 
velocities and accelerations can be obtained analytically whatever the used model. Furthermore, slow data 
acquisition rates should not affect much the quality of the fits since only three points are needed to compute the 
shape parameters of the three models. 
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